Emerging Technologies for Bioethanol Recovery Using Membrane Processes

Travis C. Bowen, Vasudevan V. Namboodiri, and Leland M. Vane

U.S. Environmental Protection Agency, ORD/NRMRL/STD/CPB, Cincinnati, OH, USA

The U.S. EPA National Risk Management Research Laboratory (NRMRL) Pervaporation Team is actively involved in developing various Green Technologies:

- Energy efficient separation processes
- Biofuel production
- Nano technology

Objective: Biofuel production from waste biomass

- Fermentation
- Biofuel recovery
- Novel polymer and nano-composite membranes
- → Move toward distributed small sale ethanol production that is economical and sustainable
 - waste biomass available throughout rural U.S.

Background:

Fermentation – converts biomass to ethanol or other biofuels

■ Biomass includes agricultural wastes, cheese whey, winery wastes, pulp and paper sludge, and many other sources

Pervaporation – membrane process

- ☐ Transport by adsorption and diffusion
- Potentially more energy efficient than traditional separation methods such as distillation
- Cost effective for small- and medium-scale applications

Non-porous or molecularly porous membrane (selective for Species 1)

Fermentation and Separation Process Integration:

- Optimization of Fermentation parameters
 - Selection and amount of enzyme
 - □ Temperature & fermentation time
- Removal of cells and other solids
 - Microfiltration or centrifugation
- Tuning of Biofuel recovery and purification
 - Development and selection of separation processes
 pervaporation, vapor separation etc.
- Recycling aspects

Ethanol Removal:

- Ethanol-selective membrane development
 - Polymer or in-house zeolite nanoparticle/polymer mixed-matrix membranes
- Membrane evaluation
 - In-house membranes
 - Membranes developed by other organizations CeraMem Corp.
- Membrane performance & stability
 - Effect of fermentation byproducts
 - Long-term pervaporation measurements
 - Adsorption characterization of membrane materials

Zeolite – nanoporous crystal

Atomic stick diagram of MFI structure zeolite

Silicalite-1 zeolite membrane being developed by CeraMem Corp.

Biomass Conversion to ethanol process diagram Residual Recycle Heat Supplemental Exchanger Heat Pump Condenser & Vacuum Pump Overhead 90+ wt% EtOH Permeate Vapor 20 wt% EtOH Condensate Condensate

Energy Recovery:

- Fractional condenser improves separation without requiring additional energy
 - Must condense to recover product
- Heat integration reduces operating costs

Collaborations:

Membrane Technology and Research, Inc. (MTR), CeraMem Corp., Kraft Foods, Integrated Separation Solutions, PFM Corp., BC International, University of Florida – Prof. Lonnie Ingram, Troy Boiler Works

Ethanol Dehydration:

 Developing high-performance hydrophilic membranes

Product

99+ wt% EtOH

- Cross-linked blend of polyalcohols and polyamines
- Mixed-matrix membranes
- Comparison of commercial technologies
- In-house membranes outperform many commercially available membranes
 - Novel & Inexpensive
 - ☐ US patent applications filed one recently awarded

Want to learn more?
Travis Bowen, Ph.D.
US EPA, 26 W. Martin Luther King Dr.
M/S443, Cincinnati, OH 45268 USA

FAX: (513) 569-7677 Ph: (513) 569-7718

e-mail: bowen.travis@epa.gov

Vasudevan Namboodiri, Ph.D.

Same address and fax

Ph. (513) 487-2700

epa**science**forum

Collaborative Science for Environmental Solutions

